Respuesta :

Answer:

[tex](x-2)^{2} +(y+4)^{2} = \frac{4}{5}[/tex]

Step-by-step explanation:

Given that the center of the circle is: (2, -4)

tangent to the line x = -2

The equation of a circle has the following formula:

[tex](x-a)^{2} +(y-b)^{2} = r^{2}[/tex] where a, b is the  center and r is the radius

The distance between the circle and the tangent line is:

d = [tex]\frac{2*1 + 2}{\sqrt{2^{2}+4^{2}} }[/tex] = [tex]2\frac{\sqrt{5} }{5}[/tex]

d = r so [tex]d^{2} =r^{2}[/tex] = [tex](2\frac{\sqrt{5} }{5})^{2}[/tex] = [tex]\frac{4}{5}[/tex]

the equation of the circle is:

[tex](x-2)^{2} +(y+4)^{2} = \frac{4}{5}[/tex]