Respuesta :
Answer:
The error E = ± 4.04 %
Step-by-step explanation:
Solution:-
- The sample data is used to estimate the population proportion ( p ).
- The success p^ = success percentage = 40 %
- The confidence interval CI = 98%
- The sample size n = 800
- The margin of error E:
- The margin of error "E" for estimation of population proportion ( p ) is given by:
[tex]E = z-critical*\sqrt{\frac{p~ ( 1 - p~ )}{n} }[/tex]
Where, Z-critical value is defined by the significance level:
P ( Z < Z-critical ) = α / 2
Where, α : Significance level
α = 1 - CI
P ( Z < Z-critical ) = (1 - 0.98) / 2
P ( Z < Z-critical ) = 0.01
Z-critical = 2.33
- The error E of estimation is:
[tex]E = 2.33*\sqrt{\frac{0.4 ( 1 - 0.4 )}{800} }\\\\E = 0.04035[/tex]
- The error E = ± 4.04 %
Answer:
The error E = ± 4.04 %
Step-by-step explanation:
Solution:-
- sample data = ( p ).
- success p^ = success percentage = 40 %
- confidence interval CI = 98%
- sample size n = 800
- margin of error E:
E=z-critical *[tex]\sqrt{p(1-P)/n}[/tex]
- The margin of error "E" for estimation of population proportion ( p ) is given by:
P ( Z < Z-critical ) = a/ 2
a = 1 - CI
P ( Z < Z-critical ) = (1 - 0.98) / 2
P ( Z < Z-critical ) = 0.01
Z-critical = 2.33
- The error E = ± 4.04 %
Thus, the correct answer is E=± 4.04 %
Learn more :
https://brainly.com/question/13031441?referrer=searchResults