Use​ l'Hôpital's Rule to find the following limit. ModifyingBelow lim With x right arrow 0StartFraction 3 sine (x )minus 3 x Over 7 x cubed EndFraction ModifyingBelow lim With x right arrow 0StartFraction 3 sine (x )minus 3 x Over 7 x cubed EndFraction equals nothing ​(Type an exact​ answer.)

Respuesta :

Answer:

[tex]\lim_{x \to 0} \frac{3sinx-3x}{7x^3}=-\frac{1}{14}[/tex]

Step-by-step explanation:

The limit is:

[tex]\lim_{x \to 0} \frac{3sinx-3x}{7x^3}=\frac{0}{0}[/tex]

so, you have an indeterminate result. By using the l'Hôpital's rule you have:

[tex]\lim_{x \to 0} \frac{a(x)}{b(x)}= \lim_{x \to 0} \frac{a'(x)}{b'(x)}[/tex]

by replacing, and applying repeatedly you obtain:

[tex]\lim_{x \to 0} \frac{3sinx-3x}{7x^3}= \lim_{x \to 0}\frac{3cosx-3}{21x^2}= \lim_{x \to 0}\frac{-3sinx}{42x}= \lim_{x \to 0}\frac{-3cosx}{42}\\\\ \lim_{x \to 0} \frac{3sinx-3x}{7x^3}=\frac{-3cos0}{42}=-\frac{1}{14}[/tex]

hence, the limit of the function is -1/14