Answer:
Margin of error [tex]=E=[69][/tex]
Step-by-step explanation:
Data provided in the question:
[tex]\bar{x}=\$\ 893[/tex]
[tex]\sigma=\$\ 450[/tex]
[tex]n=102[/tex]
At [tex]88 \%[/tex] confidence level the [tex]z[/tex] is.
[tex]\alpha=1-88 \%=1-0.88=0.12 [/tex]
[tex]\frac{\alpha}{2}=\frac{0.12}{2}=0.06 [/tex]
[tex]z_{\frac \alpha 2}=20.06=1.555[/tex]
[tex]\text { Margin of error }=E=Z_{\frac \alpha 2} \times \frac{\sigma}{\sqrt{n}}[/tex]
[tex]E=1.555 \times \frac{450}{\sqrt{102}}[/tex]
Margin of error [tex]=E=[69][/tex]