A survey of 102 high school students on the amount of money they spend on prom yields an average of $893. Assuming the population standard deviation is $450, calculate the 88% confidence interval for the mean amount spent on prom. Round off the margin of error and the limits to the nearest whole number.

Respuesta :

Answer:

Margin of error [tex]=E=[69][/tex]

Step-by-step explanation:

Data provided in the question:

[tex]\bar{x}=\$\ 893[/tex]

[tex]\sigma=\$\ 450[/tex]

[tex]n=102[/tex]

At [tex]88 \%[/tex] confidence level the [tex]z[/tex] is.

[tex]\alpha=1-88 \%=1-0.88=0.12 [/tex]

[tex]\frac{\alpha}{2}=\frac{0.12}{2}=0.06 [/tex]

[tex]z_{\frac \alpha 2}=20.06=1.555[/tex]

[tex]\text { Margin of error }=E=Z_{\frac \alpha 2} \times \frac{\sigma}{\sqrt{n}}[/tex]

[tex]E=1.555 \times \frac{450}{\sqrt{102}}[/tex]

Margin of error [tex]=E=[69][/tex]