Respuesta :
Answer:[tex]66\ mi/hr[/tex]
Step-by-step explanation:
Given
During first half it travels with a speed of [tex]v_1=60\ mi/h[/tex]
During second half it travels with a speed of [tex]v_2=72\ mi/h[/tex]
Average speed is given by [tex]=\dfrac{\text{Distance}}{\text{Total time}}[/tex]
suppose t is total time
distance travel in first half [tex]d=\frac{t}{2}\times 60[/tex]
distance travel in Second half [tex]d=\frac{t}{2}\times 72[/tex]
[tex]v_{avg}=\dfrac{\frac{t}{2}\times 60+\frac{t}{2}\times 72}{\frac{t}{2}+\frac{t}{2}}[/tex]
[tex]v_{avg}=\frac{60+72}{2}=66\ mi/hr[/tex]
Answer:
The correct answer is 65.5 mi/h
Hope this helps :)