Answer:
(a) [tex]0.408m/sec^2[/tex]
(b) [tex]0.134m/sec^2[/tex]
(c) [tex]0.039m/sec^2[/tex]
Step-by-step explanation:
We have given velocity as function of t [tex]v(t)=\frac{85t}{(8t+14)}[/tex]
Acceleration is equation rate if change of velocity with respect to time
So [tex]a=\frac{dv}{dt}=\frac{(8t+14)85-85t\times 8}{(8t+14)^2}[/tex]
(a) Acceleration at t = 5 sec
[tex]a=\frac{(8\times 5+14)85-85\times 5\times 8}{(8\times 5+14)^2}=0.408m/sec^2[/tex]
(b) Acceleration at t = 10 sec
[tex]a=\frac{(8\times 10+14)85-85\times 10\times 8}{(8\times 10+14)^2}=0.134m/sec^2[/tex]
(c) Acceleration at t = 20 sec
[tex]a=\frac{(8\times 20+14)85-85\times 20\times 8}{(8\times 20+14)^2}=0.039m/sec^2[/tex]