Help! ASAP- 20 points, easy questions

True or False- [tex]3x^2 - y^2 = (x\sqrt{3} + y) (x\sqrt{3} - y)[/tex]

True or False- [tex]9a^2 + b^2 = (3a + bi) (3a - bi)[/tex]

Respuesta :

Answer:

True

True

Step-by-step explanation:

Let's expand the parentheses for each problem.

1. [tex](x\sqrt{3} +y)(x\sqrt{3} -y)[/tex]; use FOIL (first, outer, inner, last):

[tex](x\sqrt{3} +y)(x\sqrt{3} -y)=(x\sqrt{3})^2+x\sqrt{3}*y-x\sqrt{3}*y+y*(-y)=3x^2-y^2[/tex]

This matches the first part, so it's true.

2. [tex](3a+bi)(3a-bi)[/tex]; use FOIL again. Remember that the i is imaginary and means [tex]\sqrt{-1}[/tex].

[tex](3a+bi)(3a-bi)=(3a)^2-3abi+3abi+(bi)*(-bi)=9a^2-b^2*(-1)[/tex]

[tex]9a^2-b^2*(-1)=9a^2+b^2[/tex]

So, this is true, too.

Hope this helps!

Answer:

1) True

2) True

Step-by-step explanation:

1) 3x² - y²

(xsqrt(3))² - (y)²

(xsqrt(3) - y)(xsqrt(3) + y)

2) 9a² + b²

9a² - (-b²)

(3a)² - (bi)²

(3a - bi)(3a + bi)