Respuesta :
Answer:
x = [tex]5 - \sqrt{31}[/tex], [tex]5 + \sqrt{31}[/tex]
Step-by-step explanation:
6 = x^2 - 10x
0 = x^2 - 10x - 6
Let's use the quadratic formula. ( [tex]x = \frac{-b +- \sqrt{b^2 - 4ac}}{2a}[/tex])
[tex]x = \frac{10 +- \sqrt{-10^2 - 4(-6)}}{2}[/tex]
x = [tex]\frac{10 +- 2\sqrt{31} }{2}[/tex]
= 5 +- [tex]\sqrt{31}[/tex]
x = [tex]5 - \sqrt{31}[/tex], [tex]5 + \sqrt{31}[/tex]
The solution of the quadratic equation is : x= 5+√19 , 5-√19.
What is a quadratic trinomial?
A three terms polynomial of degree 2 is known as quadratic trinomial.
How to solve the quadratic trinomial?
The general form of quadratic equation is ax²+bx+c =0,
where x = (-b±√(b²-4ac))/2a
The equation is 6=x²-10x, i.e., x²-10x-6=0
Here, a= 1, b=-10, c=-6
Hence, x=(10±√(100-24))/2
x=(10±2√19)/2
x=5+√19, x=5-√19
Learn more about quadratic equation here :
brainly.com/question/1214333
#SPJ2