contestada

In simplest radical form, what are the solutions to the quadratic equation 6 = x2 - 10x?
Quadratic formula: x= -byb2-4ac
20
x=51/31
x = 5y19
x = 52
19
O
x = 5+2/31

Respuesta :

Answer:

x = [tex]5 - \sqrt{31}[/tex], [tex]5 + \sqrt{31}[/tex]

Step-by-step explanation:

6 = x^2 - 10x

0 = x^2 - 10x - 6

Let's use the quadratic formula. ( [tex]x = \frac{-b +- \sqrt{b^2 - 4ac}}{2a}[/tex])

[tex]x = \frac{10 +- \sqrt{-10^2 - 4(-6)}}{2}[/tex]

x = [tex]\frac{10 +- 2\sqrt{31} }{2}[/tex]

  = 5 +- [tex]\sqrt{31}[/tex]

x = [tex]5 - \sqrt{31}[/tex], [tex]5 + \sqrt{31}[/tex]

The solution of the quadratic equation is : x= 5+√19 , 5-√19.

What is a quadratic trinomial?

A three terms polynomial of degree 2 is known as quadratic trinomial.

How to solve the quadratic trinomial?

The general form of quadratic equation is  ax²+bx+c =0,

where x = (-b±√(b²-4ac))/2a

The equation is 6=x²-10x, i.e., x²-10x-6=0

Here, a= 1, b=-10, c=-6

Hence, x=(10±√(100-24))/2

x=(10±2√19)/2

x=5+√19, x=5-√19

Learn more about quadratic equation here :

brainly.com/question/1214333

#SPJ2