Respuesta :

Step-by-step explanation:

We have,

[tex]\sin x=-\dfrac{\sqrt2}{2}\ ......(i)[/tex]

[tex]\cos x=\dfrac{\sqrt 2}{2}\ ......(ii)[/tex]

Applying [tex]\sin^{-1}[/tex] on both sides of equation (i) we get :

[tex]\sin^{-1} \sin x=\sin^{-1}(-\dfrac{\sqrt2}{2})[/tex]

We know that, [tex]\sin^{-1} \sin x=x[/tex]

So,

[tex]x=\sin^{-1}(-\dfrac{\sqrt2}{2})[/tex]

Also, [tex]\sin(-45)=\dfrac{-\sqrt2}{2}[/tex]

So,

[tex]x=-45^{\circ}[/tex]

Similarly,

Applying [tex]\cos^{-1}[/tex] on both sides of equation (ii) we get :

[tex]\cos^{-1} \cos x=\cos^{-1}(\dfrac{\sqrt2}{2})[/tex]

We know that, [tex]\cos^{-1} \cos x=x[/tex]

The cosine function is positive in the first and fourth quadrant.

So,

[tex]x=45^{\circ}[/tex]