The area of a rectangle is x2 - 2x - 15 and the length of the rectangle is x + 3. Find the width of the rectangle.

The area of a rectangle is x2 2x 15 and the length of the rectangle is x 3 Find the width of the rectangle class=

Respuesta :

Area of the rectangle= L* w
[tex] x^{2} -2x-15[/tex]
On expanding;
[tex] x^{2} -5x+3x-15[/tex]
=x(x-5)+3(x-5)
=(x+3)(x-5)
The width is (x-5)

Answer:

Width of the rectangle is (x-5)

Step-by-step explanation:

We know that, the product of length and width gives the area of the rectangle.

The area of a rectangle is given as,

[tex]\Rightarrow \text{Area of rectangle}=\text{Length}\times \text{Width}[/tex]

[tex]\Rightarrow \text{Width}=\dfrac{\text{Area of rectangle}}{\text{Length}}[/tex]

Factoring the area,

[tex]=x^2-2x-15[/tex]

[tex]=x^2-5x+3x-15[/tex]

[tex]=x(x-5)+3(x-5)[/tex]

[tex]=(x+3)(x-5)[/tex]

Putting it in the equation,

[tex]\Rightarrow \text{Width}=\dfrac{(x+3)(x-5)}{(x+3)}=(x-5)[/tex]