Respuesta :
x² + 6x = 40
Subtract 40 from both sides:
x² + 6x - 40 = 40 - 40
refine: x² + 6x - 40 = 0
factor x² + 6x - 40 = 0
( x- 4 ) ( x + 10 ) = 0
solve x - 4 = 0
x = 0 + 4
x = 4
solve x + 10 = 0
x = 0 - 10
x = - 10
solution : x = 4 , x = - 10
hope this helps!
Subtract 40 from both sides:
x² + 6x - 40 = 40 - 40
refine: x² + 6x - 40 = 0
factor x² + 6x - 40 = 0
( x- 4 ) ( x + 10 ) = 0
solve x - 4 = 0
x = 0 + 4
x = 4
solve x + 10 = 0
x = 0 - 10
x = - 10
solution : x = 4 , x = - 10
hope this helps!
Answer:
[tex]x_1= 4\\x_2=-10[/tex]
Step-by-step explanation:
[tex]x^2+6x=40[/tex]
Since it is an equation squared to find the two values of x we can apply the formula of the solver
[tex]x = \frac {-b \pm \sqrt {b^2 - 4ac}}{2a}[/tex]
we equate the equation to zero to be able to apply the solver
[tex]x^2+6x=40\\x^2+6x-40=0[/tex]
[tex]a=1 \\b=6\\c=-40[/tex]
[tex]x = \frac {-6 \pm \sqrt {(6)^2 - 4(1)(-40)}}{2(1)}\\x = \frac {-6 \pm \sqrt {36+160}}{2}\\x = \frac {-6 \pm \sqrt {196}}{2}\\x = \frac {-6 \pm \ 14}{2}\\x_1= \frac {-6 +\ 14}{2}\\x_1= \frac{8}{2}= 4\\x_2=\frac {-6 - 14}{2}\\x_2=\frac{-20}{2}= -10[/tex]
[tex]x_1= 4\\x_2=-10[/tex]