Respuesta :

Answer:

x = 4 and y = -3

Question;

Me pueden ayudar a resolver por método de sustitución porfa.

Translation: Can you help me to solve by please substitution method.

{5x+7y=-1

{-3x+4y=-24

Step-by-step explanation:

Given the simultaneous equation.

5x+7y=-1 .....1

-3x+4y=-24 .....2

From equation 2, making y the subject of formula.

4y = -24 + 3x

y = (-24+3x)/4 ...... 3

Substituting the equation 3 into equation 1

5x+7((-24+3x)/4) = -1

Multiply through by 4

20x + 7(-24+3x) = -4

20x - 168 + 21x = -4

41x -168 = -4

41x = -4 + 168

41x = 164

x = 164/41 = 4

x = 4

Substituting x = 4 into equation 3

y = (-24+3(4))/4

y = (-24+12)/4

y = -12/4

y = -3

Answer:

La solución del sistema de ecuaciones es (The solution for the system of equations is):

[tex]x = 4[/tex], [tex]y = -3[/tex]

Step-by-step explanation:

La resolución del sistema de ecuaciones por el método de sustitución se presenta a continuación (The solving of the system of equations by substitution method is presented hereafter):

[tex]5\cdot x + 7\cdot y = -1[/tex]

[tex]7\cdot y = -1 - 5\cdot x[/tex]

[tex]y = -\frac{1 + 5\cdot x}{7}[/tex]

Entonces, (Then,)

[tex]-3\cdot x - 4\cdot \left(\frac{1+5\cdot x}{7} \right) = -24[/tex]

[tex]-3\cdot x -\frac{4}{7} - \frac{20}{7}\cdot x = -24[/tex]

[tex]-\frac{41}{7}\cdot x = - \frac{164}{7}[/tex]

[tex]41\cdot x = 164[/tex]

[tex]x = 4[/tex]

[tex]y = -\frac{1 + 5\cdot \left(4 \right)}{7}[/tex]

[tex]y = -3[/tex]