Respuesta :
Answer:
x = 4 and y = -3
Question;
Me pueden ayudar a resolver por método de sustitución porfa.
Translation: Can you help me to solve by please substitution method.
{5x+7y=-1
{-3x+4y=-24
Step-by-step explanation:
Given the simultaneous equation.
5x+7y=-1 .....1
-3x+4y=-24 .....2
From equation 2, making y the subject of formula.
4y = -24 + 3x
y = (-24+3x)/4 ...... 3
Substituting the equation 3 into equation 1
5x+7((-24+3x)/4) = -1
Multiply through by 4
20x + 7(-24+3x) = -4
20x - 168 + 21x = -4
41x -168 = -4
41x = -4 + 168
41x = 164
x = 164/41 = 4
x = 4
Substituting x = 4 into equation 3
y = (-24+3(4))/4
y = (-24+12)/4
y = -12/4
y = -3
Answer:
La solución del sistema de ecuaciones es (The solution for the system of equations is):
[tex]x = 4[/tex], [tex]y = -3[/tex]
Step-by-step explanation:
La resolución del sistema de ecuaciones por el método de sustitución se presenta a continuación (The solving of the system of equations by substitution method is presented hereafter):
[tex]5\cdot x + 7\cdot y = -1[/tex]
[tex]7\cdot y = -1 - 5\cdot x[/tex]
[tex]y = -\frac{1 + 5\cdot x}{7}[/tex]
Entonces, (Then,)
[tex]-3\cdot x - 4\cdot \left(\frac{1+5\cdot x}{7} \right) = -24[/tex]
[tex]-3\cdot x -\frac{4}{7} - \frac{20}{7}\cdot x = -24[/tex]
[tex]-\frac{41}{7}\cdot x = - \frac{164}{7}[/tex]
[tex]41\cdot x = 164[/tex]
[tex]x = 4[/tex]
[tex]y = -\frac{1 + 5\cdot \left(4 \right)}{7}[/tex]
[tex]y = -3[/tex]