Answer:
[tex]P(X<5.5)=P(\frac{X-\mu}{\sigma}<\frac{5.5-\mu}{\sigma})=P(Z<\frac{5.5-8}{2.5})=P(z<1)[/tex]
We can find the probability using the normal distribution table or excel and we got:
[tex]P(z<1)=0.841[/tex]
Step-by-step explanation:
Let X the random variable that represent the diameters for the aspen trees of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(8,2.5)[/tex]
Where [tex]\mu=8[/tex] and [tex]\sigma=2.5[/tex]
We are interested on this probability
[tex]P(X<5.5)[/tex]
We can solve this problem using the z score formula given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
Replacing the info we got:
[tex]P(X<5.5)=P(\frac{X-\mu}{\sigma}<\frac{5.5-\mu}{\sigma})=P(Z<\frac{5.5-8}{2.5})=P(z<1)[/tex]
We can find the probability using the normal distribution table or excel and we got:
[tex]P(z<1)=0.841[/tex]