Respuesta :

Answer:

[tex] log_{2}(9x) - log_{2}(3) = 3 \\ 3 = log_{2}(8) or log_{2}( {2}^{3} ) \\ log_{2}( \frac{9x}{3} ) = log_{2}(8) \\ \frac{9x}{3} = 8 \\ 9x = 8 \times 3 \\ 9x = 24 \\ x = \frac{24}{9} \\ x = \frac{8}{3} \\ x = 2 \times \frac{2}{3} [/tex]

Answer:

[tex]\log _2\left(9x\right)-\log _2\left(3\right)=3 : x = \frac{8}{3}[/tex]

Decimal:

[tex]x = 2.66666...[/tex]

Step-by-step explanation:

[tex]\log _2\left(9x\right)-\log _2\left(3\right)=3[/tex]

Add [tex]log _2\left(3)[/tex] to both sides:

[tex]\log _2\left(9x\right)-\log _2\left(3\right)+\log _2\left(3\right)=3+\log _2\left(3\right)[/tex]

Simplify:

[tex]\log _2\left(9x\right)=3+\log _2\left(3\right)[/tex]

Use the logarithmic definition: If [tex]\log _a\left(b\right)=c\:\mathrm{then}\:b=a^c[/tex]

[tex]\log _2\left(9x\right)=3+\log _2\left(3\right)\quad \Rightarrow \quad \:9x=2^{3+\log _2\left(3\right)}[/tex]

[tex]9x=2^{3+\log _2\left(3\right)}[/tex]

Expand [tex]2^{3+\log _2\left(3\right)} : 24[/tex]

[tex]9x=24[/tex]

Solve: [tex]9x=24 : x = \frac{8}{3}[/tex]

[tex]x = \frac{8}{3}[/tex]

Verify solutions: [tex]x = \frac{8}{3}[/tex]  : True

The solution is:

[tex]x=\frac{8}{3}[/tex]

Hope I helped. If so, may I get brainliest and a thanks?

Thank you, have a good day! =)