Respuesta :

Answer:

Problem a )                                                             Problem b )

r ⇒ 4 cm,                                                                   r ⇒ 7 ft,  

Base Area ⇒ ( About ) 50.2 cm^2,      Base Area ⇒ ( About )153.9 ft^2,

Volume ⇒ ( About ) 803.8 cm^3             Volume ⇒ ( About ) 769.3 ft^3

Step-by-step explanation:

Problem a )

~ Provided that r ⇒ radius... ~

1. The Base of this cylinderical object is, of course, a circle. Knowing that, the Base area of the cylinder can be computed through πr^2, and with the diameter as 8 cm, r ⇒ 8/2 = 4 cm. Now we know that r ⇒ 4 cm, and that Base Area ⇒ π ( 4 )^2 ⇒ 16π ⇒ 50.24 cm^2.

2. With the Base Area being 50.24, we can calculate the Volume through the basic formula Base * height, and with the height being 16 cm:

Volume ⇒ ( 50.24 ) * ( 16 ) ⇒ 803.84 cm^3.

Problem b )

~ Provided that r ⇒ radius... ~

1. The Base of this cylinderical object is, of course, a circle. Knowing that, the Base area of the cylinder can be computed through πr^2, and with r ⇒ 7 ft we know that the Base Area ⇒ π ( 7 )^2 ⇒ 49π ⇒ 153.86 ft^2.

2. With the Base Area being 153.96, we can calculate the Volume through the basic formula Base * height, and with the height being 5 ft:

Volume ⇒ ( 153.86 ) * ( 5 ) ⇒ 769.3 ft^3.