Respuesta :
Answer:1 and 2
Step-by-step explanation:
Given
Volume needed [tex]V=220\ in.^3[/tex]
For first cylinder
[tex]r=3\ in.[/tex]
[tex]h=4\ in.[/tex]
[tex]V=\pi r^2h[/tex]
[tex]V_1=\pi (3)^2(4)[/tex]
[tex]V_1=113.11\ in^3[/tex]
For second cylinder
[tex]r=4\ in.[/tex]
[tex]h=4\ in.[/tex]
[tex]V=\pi r^2h[/tex]
[tex]V_2=\pi (4)^2(4)[/tex]
[tex]V_2=201.08\ in^3[/tex]
For Third cylinder
[tex]r=9\ in.[/tex]
[tex]h=9\ in.[/tex]
[tex]V=\pi r^2h[/tex]
[tex]V_3=\pi (9)^2(9)[/tex]
[tex]V_3=2290.51\ in^3[/tex]
For fourth cylinder
[tex]r=4\ in.[/tex]
[tex]h=9\ in.[/tex]
[tex]V=\pi r^2h[/tex]
[tex]V_4=\pi (4)^2(9)[/tex]
[tex]V_4=452.448\ in^3[/tex]
So, cylinder [tex]1[/tex] and [tex]2[/tex] are appropriate as it is under [tex]220\ in.^3[/tex]
Answer:
1, 2, and 4.
Step-by-step explanation:
Don't forget for these 3 you had to cut the diamiter in half to get the radius.