Respuesta :

Answer:

[tex]\frac{dy}{dx}[/tex] = [tex]\frac{5}{(x+2)^2}[/tex]

Step-by-step explanation:

Differentiate using the quotient rule.

Given y = [tex]\frac{f(x)}{g(x)}[/tex] , then

[tex]\frac{dy}{dx}[/tex] = [tex]\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}[/tex]

here f(x) = 3x + 1 ⇒ f'(x) = 3

g(x) = x + 2 ⇒ g'(x) = 1 , thus

[tex]\frac{dy}{dx}[/tex] = [tex]\frac{3(x+2)-(3x+1)}{(x+2)^2}[/tex]

    = [tex]\frac{3x+6-3x-1}{(x+2)^2}[/tex]

    = [tex]\frac{5}{(x+2)^2}[/tex]