Respuesta :
Answer:
2(x - [tex]\frac{7}{4}[/tex] )² - [tex]\frac{9}{8}[/tex]
Step-by-step explanation:
Given
2x² - 7x + 5
The coefficient of the x² term must be 1, thus factor out 2 from 2x² - 7x
= 2(x² - [tex]\frac{7}{2}[/tex] x ) + 5
To complete the square
add/ subtract ( half the coefficient of the x- term )² to x² - [tex]\frac{7}{2}[/tex] x
= 2(x² + 2(- [tex]\frac{7}{4}[/tex] )x + [tex]\frac{49}{16}[/tex] - [tex]\frac{49}{16}[/tex] ) + 5
= 2(x - [tex]\frac{7}{4}[/tex] )² - [tex]\frac{98}{16}[/tex] + 5
= 2(x - [tex]\frac{7}{4}[/tex] )² - [tex]\frac{18}{16}[/tex]
= 2(x - [tex]\frac{7}{4}[/tex] )² - [tex]\frac{9}{8}[/tex]
Answer:
g(x) = 2(x - 1.75)^2 - 1.125.
Step-by-step explanation:
g(x) = 2x^2 – 7x + 5
First take the 2 out of the first terms:
g(x) = 2(x^2 - 3.5x) + 5
Now complete the square on the expression in the parentheses:
g(x) = 2 [ (x - 1.75)^2 - 1.75^2] + 5
g(x) = 2 [ (x - 1.75)^2 - 3.0625] + 5
g(x) = 2(x - 1.75)^2 - 6.125 + 5
g(x) = 2(x - 1.75)^2 - 1.125.