the equation x^2/121 + y^2/1 = 1 represents an ellipse. which points are the vertices of the ellipse?

A. (-11,0) and (11,0)

B. (-1,0) and (1,0)

C. (0,-11) and (0,11)

D. (0,-1) and (0,1)

Respuesta :

Answer:

A. (-11,0) and (11,0)

Step-by-step explanation:

The given equation is

[tex]\frac{x^{2} }{121} +\frac{y^{2} }{1} =1[/tex]

Where [tex]a^{2} =121[/tex] and [tex]b^{2}=1[/tex]. Remember, the greater denominator is the parameter [tex]a[/tex].

[tex]a^{2} =121 \implies a=11[/tex]

[tex]b^{2}=1 \implies b=1[/tex]

Now, the vertices of an ellipse with center at the origin are defined as

[tex]V(a,0)\\V'(-a,0)[/tex]

Replacing values, we have

[tex]V(11,0)[/tex] and [tex]V'(-11,0)[/tex]

Therefore, the right answer is A.

(The image attached proves this result).

Ver imagen jajumonac

Answer: A. (-11,0) and (11,0)

Step-by-step explanation: Right on edge