Respuesta :

Answer:

The general solution of   [tex]cos x = cos(\frac{\pi }{6})[/tex]   is  

                                                x = 2nπ±[tex]\frac{\pi }{6}[/tex]

The general solution values  

                                 [tex]x = - \frac{\pi }{6} and x = \frac{\pi }{6}[/tex]

Step-by-step explanation:

Explanation:-

Given equation is  

                              [tex]2cosx-\sqrt{3} =0 for 0<x<2\pi[/tex]

                              [tex]2cosx =\sqrt{3}[/tex]

Dividing '2' on both sides, we get

                             [tex]cos x =\frac{\sqrt{3} }{2}[/tex]

                             [tex]cos x = cos(\frac{\pi }{6})[/tex]

General solution of cos θ = cos ∝ is θ = 2nπ±∝

Now The general solution of   [tex]cos x = cos(\frac{\pi }{6})[/tex]   is  

                                                x = 2nπ±[tex]\frac{\pi }{6}[/tex]

put n=0

[tex]x = - \frac{\pi }{6} and x = \frac{\pi }{6}[/tex]

Put n=1  

[tex]x = 2\pi +\frac{\pi }{6} = \frac{13\pi }{6}[/tex]

[tex]x = 2\pi -\frac{\pi }{6} = \frac{11\pi }{6}[/tex]

put n=2

[tex]x = 4\pi +\frac{\pi }{6} = \frac{25\pi }{6}[/tex]

[tex]x = 4\pi -\frac{\pi }{6} = \frac{23\pi }{6}[/tex]

And so on

But given 0 < x< 2π

The general solution values  

                                 [tex]x = - \frac{\pi }{6} and x = \frac{\pi }{6}[/tex]