Respuesta :
I’ll teach you solve 3x^-2 and 5x^2y(2x^4y^-3)
——————————————
(A)
3x^-2
Apply exponent rule:
3*1/x^2
Multiply fractions:
1*3/x^2
Multiply the numbers:
1*3= 3
3/x^2
Your Answer Is [tex]\frac{3}{x^{2} }[/tex]
(B)
5x^2y(2x^4 y^-3)
Apply exponent rule:
5y*2x^2+4 y^-3
Add the numbers:
2+4= 6
5y*2x^6 y^-3
Apply exponent rule:
5*2x^6 y^1-3
Subtract the numbers:
1-3= -2
5*2x^6 y^-2
Apply exponent rule:
5*2* 1/y^2 x^6
Multiply fractions:
1*5*2x^6/y^2
Multiply the numbers:
1*5*2= 10
10x^6/y^2
Your Answer Is [tex]\frac{10x^{6} }{y^{2} }[/tex]
Plz mark me as brainliest if this helped :)
Answer:
A. [tex]\frac{3}{x^2}[/tex]
B. [tex]\frac{10x^6}{y^2}[/tex]
Step-by-step explanation:
A.
Our expression is: [tex]3x^{-2}[/tex], where we have a negative exponent.
Remember that negative exponents are the same as taking the reciprocal of the number and taking that to the positive exponent.
Here, we have [tex]x^{-2}[/tex], so its reciprocal is just 1/x. Now, we take the positive square of the reciprocal: [tex]\frac{1}{x^2}[/tex]. Put the 3 in and our final answer is: [tex]\frac{3}{x^2}[/tex].
B.
Our expression is: [tex]5x^2y(2x^4y^{-3})[/tex]. Basically, we're multiplying these together.
Remember that when multiplying numbers with the same base, we always add the exponents. Here, we have:
[tex]5x^2y(2x^4y^{-3})=5*2*x^2y*x^4y^{-3}=10x^2y*x^4y^{-3}[/tex]
The two x terms will combine to become [tex]x^{2+4}=x^6[/tex], and the two y terms will combine to become [tex]y^{1+(-3)}=y^{-2}=\frac{1}{y^2}[/tex].
The final answer is: [tex]\frac{10x^6}{y^2}[/tex].