Respuesta :

I’ll teach you solve 3x^-2 and 5x^2y(2x^4y^-3)

——————————————

(A)

3x^-2

Apply exponent rule:

3*1/x^2

Multiply fractions:

1*3/x^2

Multiply the numbers:

1*3= 3

3/x^2

Your Answer Is [tex]\frac{3}{x^{2} }[/tex]

(B)

5x^2y(2x^4 y^-3)

Apply exponent rule:

5y*2x^2+4 y^-3

Add the numbers:

2+4= 6

5y*2x^6 y^-3

Apply exponent rule:

5*2x^6 y^1-3

Subtract the numbers:

1-3= -2

5*2x^6 y^-2

Apply exponent rule:

5*2* 1/y^2 x^6

Multiply fractions:

1*5*2x^6/y^2

Multiply the numbers:

1*5*2= 10

10x^6/y^2

Your Answer Is [tex]\frac{10x^{6} }{y^{2} }[/tex]

Plz mark me as brainliest if this helped :)

Answer:

A. [tex]\frac{3}{x^2}[/tex]

B. [tex]\frac{10x^6}{y^2}[/tex]

Step-by-step explanation:

A.

Our expression is: [tex]3x^{-2}[/tex], where we have a negative exponent.

Remember that negative exponents are the same as taking the reciprocal of the number and taking that to the positive exponent.

Here, we have [tex]x^{-2}[/tex], so its reciprocal is just 1/x. Now, we take the positive square of the reciprocal: [tex]\frac{1}{x^2}[/tex]. Put the 3 in and our final answer is: [tex]\frac{3}{x^2}[/tex].

B.

Our expression is: [tex]5x^2y(2x^4y^{-3})[/tex]. Basically, we're multiplying these together.

Remember that when multiplying numbers with the same base, we always add the exponents. Here, we have:

[tex]5x^2y(2x^4y^{-3})=5*2*x^2y*x^4y^{-3}=10x^2y*x^4y^{-3}[/tex]

The two x terms will combine to become [tex]x^{2+4}=x^6[/tex], and the two y terms will combine to become [tex]y^{1+(-3)}=y^{-2}=\frac{1}{y^2}[/tex].

The final answer is: [tex]\frac{10x^6}{y^2}[/tex].