Respuesta :

Answer:

the  positive slope of the asymptote = 5

Step-by-step explanation:

Given that:

[tex]\frac{(y+11)^2}{100} -\frac{(x-6)^2}{4} =1[/tex]

Using the standard form of the equation:

[tex]\frac{(y-k)^2}{a^2}-\frac{(x-h)^2}{b^2}= 1[/tex]

where:

(h,k) are the center of the hyperbola.

and the y term is in front of the x term  indicating that the  hyperbola opens up and down.

a = distance that indicates  how far above and below of the center the vertices of the hyperbola are.

For the above standard equation; the equation for the asymptote is:

[tex]y = \pm \frac{a}{b} (x-h)+k[/tex]

where;

[tex]\frac{a}{b}[/tex] is the slope

From above;

(h,k) = 11, 100

[tex]a^2[/tex] = 100

a = [tex]\sqrt{100}[/tex]

a = 10

[tex]b^2 =4[/tex]

b = [tex]\sqrt{4}[/tex]

b = 2

[tex]y = \pm \frac{10}{2} (x-11)+2[/tex]

[tex]y = \pm 5 (x-11)+2[/tex]

y = 5x-53 , -5x -57

Since we are to find the positive slope of the asymptote: we have  

[tex]\frac{a}{b}[/tex] to be  the slope in the equation  [tex]y = \pm \frac{10}{2} (y-11)+2[/tex]

[tex]\frac{a}{b}[/tex]  = [tex]\frac{10}{2}[/tex]

[tex]\frac{a}{b}[/tex]  = 5

Thus, the  positive slope of the asymptote = 5

Answer:

5

Step-by-step explanation:

Cause I said so