Respuesta :

Answer:

-The equation for the problem:

[tex]y = \frac{1}{2}x + \frac{5}{2}[/tex]

Step-by-step explanation:

-First, you need determine the slope of a line:

[tex]m = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex] (where [tex](x_{1},y_{1})[/tex] is the first coordinate and [tex](x_{2},y_{2})[/tex] is the second coordinate).

-Use both points [tex](-1,2)[/tex] and [tex](5,5)[/tex] for the formula:

[tex]m = \frac{5-2}{5+1}[/tex]

[tex]m = \frac{3}{6}[/tex]

[tex]m = \frac{1}{2}[/tex]

-After you have found the slope, use the point-slope formula and use the slope [tex]\frac{1}{2}[/tex] and the first coordinate, which is [tex](-1,2)[/tex], to solve the equation and put it in slope-intercept form:

[tex]y-y_{1} = m (x-x_{1})[/tex]

[tex]y-2 = \frac{1}{2} (x+1)[/tex]

-Solve:

[tex]y-2 = \frac{1}{2} (x+1)[/tex]

[tex]y-2 = \frac{1}{2}x + \frac{1}{2}[/tex]

[tex]y = \frac{1}{2}x + \frac{5}{2}[/tex]

So, therefore the equation is [tex]y = \frac{1}{2}x + \frac{5}{2}[/tex] .