The expressions 10/12(245b−365) and 2/3(3b+6) represent the lengths of the diagonals of parallelogram WXYZ. For what value of b is WXYZ a rectangle?

b =

Respuesta :

Answer:

b = 1.52

Step-by-step explanation:

Length of diagonals of a parallelogram = [tex]\frac{10}{12}(245b - 365)[/tex] and [tex]\frac{2}{3}(3b+6)[/tex]

If the given parallelogram is a rectangle,

Length of the diagonals will be equal in measure,

Therefore, [tex]\frac{10}{12}(245b - 365)=\frac{2}{3}(3b+6)[/tex]

245b - 365 = [tex]\frac{12}{10}\times \frac{2}{3}(3b+6)[/tex]

245b - 365 = [tex]\frac{4}{5}(3b+6)[/tex]

5(245b - 365) = 4(3b + 6)

1225b - 1825 = 12b + 24

1225b - 12b = 24 + 1825

1213b = 1849

b = [tex]\frac{1849}{1213}[/tex]

b = 1.52

The value of b in WXYZ a rectangle is 1.52

For  WXYZ to be a rectangle, the diagonal must be equal. Therefore,

10/12(245b−365) = 2/3(3b+6)

2450b / 12 - 3650 / 12 = 2b + 4

2450b / 12  - 2b  = 3650 / 12 + 4

204.166666667 b - 2b  = 304.166666667 + 4

202.166666667 b = 308.166666667

divide both sides by 202.166666667

b = 308.166666667 / 202.166666667

b = 1.52431986558

b = 1.52

learn more: https://brainly.com/question/12096909?referrer=searchResults