In the diagram shown points A, B, C, D, and E lie on circle M. Point P is on the exterior or circle M and secants PCD and PBE drawn. It is known that m


(a) Determine the measure of BC


(b) Determine the measure of

Respuesta :

Answer:

The measure of  [tex]m \hat {BC}=34^0[/tex]

The measure of [tex]\angle DFE = 81^0[/tex]

Step-by-step explanation:

The correct question  is added in the diagram below.

From the diagram;

Given that:

∠A = 55°

∠P =38°

[tex]m \hat {AC} = 86^0[/tex]

[tex]m \hat{DE} = 2( \angle A )[/tex]

[tex]m \hat{DE} = 2( 55^0 )[/tex]

[tex]m \hat{DE} = 110^0[/tex]

a) it is clear and obvious that ∠P  is formed at the exterior of the circle; so:

[tex]m \angle P = \dfrac{m \hat {DE} -m \hat {BC} }{2}[/tex]

[tex]38= \dfrac{110 -m \hat {BC} }{2}[/tex]

[tex]38*2={110 -m \hat {BC} }{[/tex]

[tex]76={110 -m \hat {BC} }{[/tex]

[tex]m \hat {BC} }{={110 -76[/tex]

[tex]m \hat {BC}=34^0[/tex]

b) [tex]m \hat {AC}=m \hat {AB}+ m \hat {BC}[/tex]

[tex]86=m \hat {AB}+ 34[/tex]

[tex]m \hat {AB}=86-34[/tex]

[tex]m \hat {AB}=52[/tex]

∴  [tex]\angle DFE = \dfrac{m \hat{DE}+m \hat{AB}}{2}[/tex]     (rule: chord intersecting inside the circle)

[tex]\angle DFE = \dfrac{110+52}{2}[/tex]

[tex]\angle DFE = \dfrac{162}{2}[/tex]

[tex]\angle DFE = 81^0[/tex]

Ver imagen ajeigbeibraheem