Respuesta :

Answer:

[tex]V_2 = 2.447[/tex] atm

Explanation:

As we know that

[tex]PV = nRT\\[/tex]

Where P is the pressure in atmospheric pressure

T is the temperature in Kelvin  

R is the gas constant  [tex]R = 0.08206[/tex]

V is the volume in liters

[tex]\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}[/tex]

Substituting the given values in above equation, we get -

[tex]\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}\\\frac{5*0.565}{315.15} = \frac{1*V_2}{273}[/tex]

On rearranging, we get

[tex]\frac{5*0.565*273}{315.15} = V_2\\V_2 = 2.447[/tex]

[tex]V_2 = 2.447[/tex] atm