Respuesta :
Step-by-step explanation:
[tex]r = \sqrt{ \frac{ax - p}{q + bx} } \\ {r}^{2} = \frac{ax - p}{q + bx} [/tex]
r² (q + bx) = ax - p
qr² + bxr² = ax - p
qr² + p = ax - bxr²
qr² + p = x (a - br²)
[tex]x = \frac{q {r}^{2} + p}{a - b {r}^{2} } [/tex]
Answer:
[tex]\displaystyle x=\frac{-P-\math{R}^2Q}{\math{R}^2b-a}[/tex]
Step-by-step explanation:
[tex]R=\sqrt{\frac{ax-P}{Q+bx}}[/tex]
[tex]\mathrm{Square\:both\:sides}[/tex]
[tex]R^2=\left(\sqrt{\frac{ax-P}{Q+bx}}\right)^2[/tex]
[tex]R^2=\frac{ax-P}{Q+bx}[/tex]
[tex]\mathrm{Multiply\:both\:sides\:by\:}Q+bx[/tex]
[tex]\math{R}^2\left(Q+bx\right)=\frac{ax-P}{Q+bx}\left(Q+bx\right)[/tex]
[tex]\math{R}^2\left(Q+bx\right)=ax-P[/tex]
[tex]\math{R}^2Q+\math{R}^2bx=ax-P[/tex]
[tex]\mathrm{Subtract\:}\math{R}^2Q\mathrm{\:from\:both\:sides}[/tex]
[tex]\math{R}^2Q+\math{R}^2bx-\math{R}^2Q=ax-P-\math{R}^2Q[/tex]
[tex]\math{R}^2bx=ax-P-\math{R}^2Q[/tex]
[tex]\mathrm{Subtract\:}ax\mathrm{\:from\:both\:sides}[/tex]
[tex]\math{R}^2bx-ax=ax-P-\math{R}^2Q-ax[/tex]
[tex]\math{R}^2bx-ax=-P-\math{R}^2Q[/tex]
[tex]\mathrm{Factor}\:\math{R}^2bx-ax[/tex]
[tex]x\left(\math{R}^2b-a\right)=-P-\math{R}^2Q[/tex]
[tex]\mathrm{Divide\:both\:sides\:by\:}\math{R}^2b-a[/tex]
[tex]\frac{x\left(\math{R}^2b-a\right)}{\math{R}^2b-a}=-\frac{P}{\math{R}^2b-a}-\frac{\math{R}^2Q}{\math{R}^2b-a}[/tex]
[tex]x=\frac{-P-\math{R}^2Q}{\math{R}^2b-a}[/tex]