Answer:
g(x) is a vertical compression of f(x)
Step-by-step explanation:
Equation of graph 1 :[tex]f(x)=x^2[/tex]
Equation of graph 2 :[tex]g(x)=\frac{2}{3}x^2[/tex]
f(x)→a f(x)
Its is case of vertical stretch or compression
Vertical stretch if |a|>1
Vertical compression if 0<|a|<1
f(x)→a f(x)
So, [tex]x^2[/tex] →[tex]\frac{2}{3}x^2[/tex]
So, [tex]a= \frac{2}{3}=0.67[/tex]
So,0<|a|<1
So,It is a case of vertical compression
So, g(x) is a vertical compression of f(x)