Respuesta :
Answer:
A) M
Explanation:
The three blocks are set in series on a horizontal frictionless surface, whose mutual contact accelerates all system to the same value due to internal forces as response to external force exerted on the box of mass M (Newton's Third Law). Let be F the external force, and F' and F'' the internal forces between boxes of masses M and 2M, as well as between boxes of masses 2M and 3M. The equations of equilibrium of each box are described below:
Box with mass M
[tex]\Sigma F = F - F' = M\cdot a[/tex]
Box with mass 2M
[tex]\Sigma F = F' - F'' = 2\cdot M \cdot a[/tex]
Box with mass 3M
[tex]\Sigma F = F'' = 3\cdot M \cdot a[/tex]
On the third equation, acceleration can be modelled in terms of F'':
[tex]a = \frac{F''}{3\cdot M}[/tex]
An expression for F' can be deducted from the second equation by replacing F'' and clearing the respective variable.
[tex]F' = 2\cdot M \cdot a + F''[/tex]
[tex]F' = 2\cdot M \cdot \left(\frac{F''}{3\cdot M} \right) + F''[/tex]
[tex]F' = \frac{5}{3}\cdot F''[/tex]
Finally, F'' can be calculated in terms of the external force by replacing F' on the first equation:
[tex]F - \frac{5}{3}\cdot F'' = M \cdot \left(\frac{F''}{3\cdot M} \right)[/tex]
[tex]F = \frac{5}{3} \cdot F'' + \frac{1}{3}\cdot F''[/tex]
[tex]F = 2\cdot F''[/tex]
[tex]F'' = \frac{1}{2}\cdot F[/tex]
Afterwards, F' as function of the external force can be obtained by direct substitution:
[tex]F' = \frac{5}{6}\cdot F[/tex]
The net forces of each block are now calculated:
Box with mass M
[tex]M\cdot a = F - \frac{5}{6}\cdot F[/tex]
[tex]M\cdot a = \frac{1}{6}\cdot F[/tex]
Box with mass 2M
[tex]2\cdot M\cdot a = \frac{5}{6}\cdot F - \frac{1}{2}\cdot F[/tex]
[tex]2\cdot M \cdot a = \frac{1}{3}\cdot F[/tex]
Box with mass 3M
[tex]3\cdot M \cdot a = \frac{1}{2}\cdot F[/tex]
As a conclusion, the box with mass M experiments the smallest net force acting on it, which corresponds with answer A.