Respuesta :

Answer:

x =42

q = 135°

p + q + r = 225°

Step-by-step explanation:

a)

Since, AB and BC are perpendicular lines.

[tex] m\angle ABC = 90\degree \\

\therefore 24\degree + x\degree + 24\degree = 90\degree \\

\therefore x\degree + 48\degree = 90\degree \\

\therefore x\degree = 90\degree - 48\degree \\

\huge \red {\boxed {\therefore x = 42}} \\[/tex]

b) (i)

Since, CD and EF are parallel lines and AB is a straight line.

[tex] \therefore q = 135\degree... (vertical \: \angle 's) \\\\

p + 135\degree = 180°..(straight\: line \: \angle' s) \\

p = 180\degree - 135\degree \\

\huge \purple {\boxed {p = 45\degree}} \\

\because r = p ... (vertical \: \angle 's) \\

\huge \purple {\boxed {r = 45\degree}} \\

p + q + r = 45\degree + 135\degree + 45\degree \\

\huge \purple {\boxed {p + q + r = 225\degree }}\\[/tex]