Respuesta :
Answer:
a. 2.668 m/s
b. 0.00494
Explanation:
The computation is shown below:
a. As we know that
[tex]W = F\times d[/tex]
[tex]KE = 0.5\times m\times v^2[/tex]
As the wind does not move the skater to the east little work is performed in this direction. All the work goes in the direction of the N-S. And located in that direction the component of the Force.
F = 3.70 cos 45 = 2.62 N
[tex]W = F \times d = 2.62 N \times 100 m[/tex]
[tex]W = 261.6 N\times m[/tex]
We know that
KE1 = Initial kinetic energy
KE2 = kinetic energy following 100 m
The energy following 100 meters equivalent to the initial kinetic energy less the energy lost to the work performed by the wind on the skater.
So, the equation is
KE2 = KE1 - W
[tex]0.5 m\times v2^2 = 0.5 m\ v1^2 - W[/tex]
Now solve for v2
[tex]v2 = \sqrt{v1^2 - {\frac{2W}{M}}}[/tex]
[tex]= \sqrt{4.1 m/s)^2 - \frac{2 \times 261.6 N\times m}{54.0 kg}}[/tex]
= 2.668 m/s
b. Now the minimum value of Ug is
As we know that
Ff = force of friction
Us = coefficient of static friction
N = Normal force = weight of skater
So,
[tex]Ff = Us\times N[/tex]
Now solve for Us
[tex]= \frac{Ff}{N}[/tex]
[tex]= \frac{3.70 N \times cos 45 }{54.0 kg \times 9.81 m/s^2}[/tex]
= 0.00494