Answer:
55.3
Explanation:
The computation of the number of bright-dark-bright fringe shifts observed is shown below:
[tex]\triangle m = \frac{2d}{\lambda} (n - 1)[/tex]
where
d = [tex]3.95 \times 10^{-2}m[/tex]
[tex]\lambda = 400 \times 10^{-9}m[/tex]
n = 1.00028
Now placing these values to the above formula
So, the number of bright-dark-bright fringe shifts observed is
[tex]= \frac{2 \times3.95 \times 10^{-2}m}{400 \times 10^{-9}m} (1.00028 - 1)[/tex]
= 55.3
We simply applied the above formula so that the number of bright dark bright fringe shifts could come