Answer:
The distance is [tex]S = 39.2 \ m[/tex]
Explanation:
From the question we are told that
The distance covered after t = 1 s is [tex]d = 4.9 \ m[/tex]
According to the equation of motion
[tex]v^2 = u^2 + 2ad[/tex]
Now u = 0 m/s since before the drop the ball was at rest
[tex]v^2 = 2ad[/tex]
here [tex]a =g = 9.8 \ m/s^2[/tex]
So
[tex]v = 9.8 m/s[/tex]
Also from equation of motion we have that
[tex]S = ut + \frac{1}{2} at^2[/tex]
Now at t = 2 s , as given from the question
Then u = v = 9.8 m/s
And
[tex]S = 9.8 * 2 + \frac{1}{2} * (9.8) * (2^2)[/tex]
[tex]S = 9.8 * 2 + \frac{1}{2} * (9.8) * (2^2)[/tex]
[tex]S = 39.2 \ m[/tex]