For the last question this is what I meant.

Answer:
[tex]\mathrm{C}[/tex]
Step-by-step explanation:
[tex]\frac{2}{9} \times \frac{3}{4}[/tex]
[tex]\mathrm{Reciprocal\:of\:\frac{3}{4} }[/tex]
[tex]\frac{2}{9} \div \frac{4}{3}[/tex]
Answer:
[tex]$\text{C) } \frac{2}{9} \div \frac{4}{3} = \frac{2}{9} \cdot\frac{3}{4} $[/tex]
Step-by-step explanation:
[tex]$\text{A) } \frac{2}{9} \div \frac{3}{4} = \frac{2}{9} \cdot\frac{4}{3} $[/tex]
[tex]$\text{B) } \frac{2}{9} \div \frac{2}{9} = \frac{2}{9} \cdot\frac{9}{2} $[/tex]
[tex]$\text{C) } \frac{2}{9} \div \frac{4}{3} = \frac{2}{9} \cdot\frac{3}{4} $[/tex]
[tex]$\text{D) } \frac{9}{2} \div \frac{4}{3} = \frac{9}{2} \cdot\frac{3}{4} $[/tex]
Note: See reciprocal of a fraction