Respuesta :
Answer:
[tex]y(x)=c_1e^{-3x} cos(2x)+c_2e^{-3x} sin(2x)[/tex]
Step-by-step explanation:
In order to find the general solution of a homogeneous second order differential equation, we need to solve the characteristic equation. This is basically as easy as solving a quadratic.
For a second order differential equation of type:
[tex]ay''+by'+cy=0[/tex]
Has characteristic equation:
[tex]a r^{2} +br+c=0[/tex]
Whose solutions [tex]r_1 , r_2 ,.., r_n[/tex] are the roots from which the general solution can be formed. There are three cases:
Real roots:
[tex]y(x)=c_1e^{r_1 x} +c_2e^{r_2 x}[/tex]
Repeated roots:
[tex]y(x)=c_1e^{r x} +c_1 xe^{r x}[/tex]
Complex roots:
[tex]y(x)=c_1e^{\lambda x}cos(\mu x) +c_2e^{\lambda x}sin(\mu x)\\\\Where:\\\\r_1_,_2=\lambda \pm \mu i[/tex]
Therefore:
The characteristic equation for:
[tex]y''+6y'+13y=0[/tex]
Is:
[tex]r^{2} +6r+13=0[/tex]
Solving for [tex]r[/tex] :
[tex]r_1_,_2= -3 \pm 2i[/tex]
So:
[tex]\mu = 2\\\\and\\\\\lambda=-3[/tex]
Hence, the general solution of the differential equation will be given by:
[tex]y(x)=c_1e^{-3x} cos(2x)+c_2e^{-3x} sin(2x)[/tex]