A 4 cm diameter "bobber" with a mass of 3 grams floats on a pond. A thin, light fishing line is tied to the bottom of the bobber, and from the bottom hangs a 10 gram lead weight. The density of lead is 11.3 g/cm3. What fraction of the bobber's volume is submerged, as a percent of the total volume

Respuesta :

Answer:

Explanation:

Calculate the volume of the lead

[tex]V=\frac{m}{d}\\\\=\frac{10g}{11.3g'cm^3}[/tex]

Now calculate the bouyant force acting on the lead

[tex]F_L = Vpg[/tex]

[tex]F_L=(\frac{10g}{11.3g/cm^3} )(1g/cm^3)(9.8m/s^2)\\\\=8.673\times 10^{-3}N[/tex]

This force will act in upward direction

Gravitational force on the lead due to its mass  will act in downward direction

Hence the difference of this two force

[tex]T=mg-F_L\\\\=(10\times10^{-3}kg(9.8m/s^2)-8.673\times 10^{-3}\\\\=8.933\times10^{-3}N[/tex]

If V is the volume submerged in the water then bouyant force on the bobber is

[tex]F_B=V'pg[/tex]

Equate bouyant force with the tension and gravitational force

[tex]F_B=T_mg\\\\V'pg=\frac{(8.933\times10^{-2}N)+mg}{pg} \\\\V'=\frac{(8.933\times10^{-2}N)+mg}{pg}[/tex]

Now Total volume of bobble is

[tex]\frac{V'}{V^B} =\frac{\frac{(8.933\times10^{-2})+Mg}{pg} }{\frac{4}{3} \pi R^3 }\times100\\\\=\frac{\frac{(8.933\times10^{-2})+(3)(9.8)}{(1000)(9.8)} }{\frac{4}{3} \pi (4.0\times10^{-2})^3 }\times100\\\\[/tex]

=[tex]\large\boxed{4.52 \%}[/tex]