Respuesta :
Answer:
No solution.
Step-by-step explanation:
Given fraction is:
[tex]\dfrac{3}{m+3} -\dfrac{m}{3-m} = \dfrac{m^2+9}{m^2-9}\\\Rightarrow \dfrac{3}{m+3} +\dfrac{m}{m-3} = \dfrac{m^2+9}{m^2-9}\\\Rightarrow \dfrac{3\times (m-3)+ m(m+3)}{(m+3)(m-3)} = \dfrac{m^2+9}{m^2-9}\\\Rightarrow \dfrac{3 m-9+ m^2+3m}{m^2-9} = \dfrac{m^2+9}{m^2-9}\\\Rightarrow \dfrac{m^2-9+ 6m}{m^2-9} = \dfrac{m^2+9}{m^2-9}\\If\ m^2-9 \neq 0\ or\ m \neq 3\\\Rightarrow m^2-9+ 6m = m^2+9\\\Rightarrow 6m = 18\\\Rightarrow m = 3[/tex]
Formula used:
[tex](a+b)(a-b) = a^{2} -b^{2}[/tex]
But, the above equation was solved at the condition that:
[tex]m\neq 3[/tex]
So, there is no solution for the given equation.