The function yp=3x2+4x is a particular solution to the nonhomogeneous equation y′′−6y′+9y=27x2−18 Find the general solution of the nonhomogeneous equation y′′−6y′+9y=27x2−18. (Hint: you need yc.)

Respuesta :

Answer:

[tex]y(x)==(c_1+c_2x)e^{3x}+3x^2+4x[/tex]

Step-by-step explanation:

We are given that  non-homogeneous equation

[tex]y''-6y'+9y=27x^2-18[/tex]

Particular solution of given equation is given by

[tex]y_p=3x^2+4x[/tex]

We  have to find the general solution of the non-homogeneous equation.

Auxillary equation

[tex]m^2-6m+9=0[/tex]

[tex]m^2-3m-3m+9=0[/tex]

[tex]m(m-3)-3(m-3)=0[/tex]

[tex](m-3)(m-3)=0[/tex]

[tex]m=3,3[/tex]

[tex]y_c=(c_1+c_2x)e^{3x}[/tex]

General solution is given by

[tex]y(x)=y_c+y_p[/tex]

[tex]y(x)==(c_1+c_2x)e^{3x}+3x^2+4x[/tex]