Answer:
The probability that a student arriving at the ATM will have to wait is 67%.
Step-by-step explanation:
This can be solved using the queueing theory models.
We have a mean rate of arrival of:
[tex]\lambda=1/3\,min^{-1}[/tex]
We have a service rate of:
[tex]\mu=1/2\,min^{-1}[/tex]
The probability that a student arriving at the ATM will have to wait is equal to 1 minus the probability of having 0 students in the ATM (idle ATM).
Then, the probability that a student arriving at the ATM will have to wait is equal to the utilization rate of the ATM.
The last can be calculated as:
[tex]P_{n>0}=\rho=\dfrac{\lambda}{\mu}=\dfrac{1/3}{1/2}=\dfrac{2}{3}=0.67[/tex]
Then, the probability that a student arriving at the ATM will have to wait is 67%.