Respuesta :

Answer:

[tex]f(2)=20\\f(a+h)=3a^2+6ah+3h^2+2a+2h+4[/tex]

Step-by-step explanation:

[tex]f(x)=3x^2 + 2x + 4[/tex]

[tex]f(2)=3(2)^2 + 2(2) + 4\\f(2)=3(4)+ 2(2) + 4\\f(2)=12+ 4+ 4\\f(2)=20[/tex]

[tex]f(a+h)=3(a+h)^2 + 2(a+h) + 4\\f(a+h)=3(a+h)(a+h) + 2(a+h) + 4\\f(a+h)=3a^2+3ah+3ah+3h^2+2a+2h+4\\f(a+h)=3a^2+6ah+3h^2+2a+2h+4[/tex]

Answer:

f(2) = 20

f(a+h) = 3a²+6ah+3h²+2a+2h+4

Step-by-step explanation:

f(x) = [tex]3x^2+2x+4[/tex]

A) Putting x =2

=> f(2) = 3(2)²+2(2)+4

=> f(2) = 12+4+4

=> f(2) = 20

B) Putting x = a+h

=> f(a+h) = 3(a+h)²+2(a+h)+4

=> f(a+h) = 3a²+6ah+3h²+2a+2h+4