Using the quadratic formula to solve 2x2 = 4x – 7, what are the values of x? 2 plus-or-minus StartRoot 10 EndRoot i 1 plus-or-minus StartRoot 10 EndRoot i StartFraction 2 plus-or-minus StartRoot 10 EndRoot i Over 2 EndFraction 1 plus-or-minus StartRoot 5 EndRoot i

Respuesta :

Answer:

[tex]x = 1 +/- \frac{i\sqrt{10} }{2}[/tex]

Step-by-step explanation:

The equation given is:

[tex]2x^2 = 4x - 7\\\\2x^2 - 4x + 7 = 0[/tex]

Using quadratic formula:

[tex]x = \frac{-b +/- \sqrt{b^2 - 4ac} }{2a}[/tex]

From the question:

a = 2, b = -4, c = 7

Therefore:

[tex]x = \frac{4 +/- \sqrt{(-4)^2 - 4 * 2 * 7} }{2 * 2}\\\\x = \frac{4 +/- \sqrt{(16 - 56)} }{4}\\\\x = \frac{4 +/- \sqrt{-40} }{4}\\[/tex]

=> [tex]x = 1 +/- \frac{i\sqrt{10} }{2}[/tex]

The solution of given quadratic equation is given as   [tex]x = 1 \pm i\dfrac{\sqrt{10}}{2}[/tex]

Given the quadratic equation:

[tex]2x^2 = 4x -7[/tex]

Formula for finding roots of quadratic equation [tex]ax^2 + bx + c = 0[/tex] is given by:

[tex]x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\[/tex]

Here, we get a = 2, b = -4, and c = 7.

Thus, the roots can be found as:

[tex]x = \dfrac{4 \pm \sqrt{16 - 56}}{4} \\\\x = \dfrac{4 \pm \sqrt{-40}}{4} \\\\x = \dfrac{4 \pm 2i\sqrt{10}}{4} \\\\\\x = 1 \pm i\dfrac{\sqrt{10}}{2}[/tex]

Thus, the solution of the given quadratic equation is given as  [tex]x = 1 \pm i\dfrac{\sqrt{10}}{2}[/tex].

Learn here more:

https://brainly.com/question/4366363