A helium nucleus (charge = 2e, mass = 6.63 10-27 kg) traveling at 6.20 105 m/s enters an electric field, traveling from point circled A, at a potential of 1.50 103 V, to point circled B, at 4.00 103 V. What is its speed at point circled B?

Respuesta :

Answer:

[tex]v_B=3.78\times 10^5\ m/s[/tex]

Explanation:

It is given that,

Charge on helium nucleus is 2e and its mass is [tex]6.63\times 10^{-27}\ kg[/tex]

Speed of nucleus at A is [tex]v_A=6.2\times 10^5\ m/s[/tex]

Potential at point A, [tex]V_A=1.5\times 10^3\ V[/tex]

Potential at point B, [tex]V_B=4\times 10^3\ V[/tex]

We need to find the speed at point B on the circle. It is based on the concept of conservation of energy such that :

increase in kinetic energy = increase in potential×charge

[tex]\dfrac{1}{2}m(v_A^2-v_B^2)=(V_B-V_A)q\\\\\dfrac{1}{2}m(v_A^2-v_B^2)={(4\times 10^3-1.5\times 10^3)}\times 2\times 1.6\times 10^{-19}=8\times 10^{-16}\\\\v_A^2-v_B^2=\dfrac{2\times 8\times 10^{-16}}{6.63\times 10^{-27}}\\\\v_A^2-v_B^2=2.41\times 10^{11}\\\\v_B^2=(6.2\times 10^5)^2-2.41\times 10^{11}\\\\v_B=3.78\times 10^5\ m/s[/tex]

So, the speed at point B is [tex]3.78\times 10^5\ m/s[/tex].