Respuesta :

Answer:

[tex] x^{33} [/tex]

Step-by-step explanation:

[tex] \dfrac{x^8y^{-26}}{x^{14}y^{-5} \times x^{-39}y^{-21}} = [/tex]

A negative exponent in the numerator is a positive exponent in the denominator.

A negative exponent in the denominator is a positive exponent in the numerator.

[tex] = \dfrac{x^8y^{5}x^{39}y^{21}}{x^{14}y^{26}} [/tex]

[tex] = \dfrac{x^{8 + 39} y^{5 + 21}}{x^{14}y^{26}} [/tex]

[tex] = \dfrac{x^{47} y^{26}}{x^{14}y^{26}} [/tex]

[tex] = x^{47 - 14} y^{26 - 26} [/tex]

[tex] = x^{33} y^{1} [/tex]

[tex] = x^{33} [/tex]