The length of time for one individual to be served at a cafeteria is an exponential random variable with mean of 5 minutes. Assume a person has waited for at least 3 minutes to be served. What is the probability that the person will need to wait at least 7 minutes total

Respuesta :

Answer:

44.93% probability that the person will need to wait at least 7 minutes total

Step-by-step explanation:

To solve this question, we need to understand the exponential distribution and conditional probability.

Exponential distribution:

The exponential probability distribution, with mean m, is described by the following equation:

[tex]f(x) = \mu e^{-\mu x}[/tex]

In which [tex]\mu = \frac{1}{m}[/tex] is the decay parameter.

The probability that x is lower or equal to a is given by:

[tex]P(X \leq x) = \int\limits^a_0 {f(x)} \, dx[/tex]

Which has the following solution:

[tex]P(X \leq x) = 1 - e^{-\mu x}[/tex]

The probability of finding a value higher than x is:

[tex]P(X > x) = 1 - P(X \leq x) = 1 - (1 - e^{-\mu x}) = e^{-\mu x}[/tex]

Conditional probability:

We use the conditional probability formula to solve this question. It is

[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]

In which

P(B|A) is the probability of event B happening, given that A happened.

[tex]P(A \cap B)[/tex] is the probability of both A and B happening.

P(A) is the probability of A happening.

The length of time for one individual to be served at a cafeteria is an exponential random variable with mean of 5 minutes

This means that [tex]m = 5, \mu = \frac{1}{5} = 0.2[/tex]

Assume a person has waited for at least 3 minutes to be served. What is the probability that the person will need to wait at least 7 minutes total

Event A: Waits at least 3 minutes.

Event B: Waits at least 7 minutes.

Probability of waiting at least 3 minutes:

[tex]P(A) = P(X > 3) = e^{-0.2*3} = 0.5488[/tex]

Intersection:

The intersection between waiting at least 3 minutes and at least 7 minutes is waiting at least 7 minutes. So

[tex]P(A \cap B) = P(X > 7) = e^{-0.2*7} = 0.2466[/tex]

What is the probability that the person will need to wait at least 7 minutes total

[tex]P(B|A) = \frac{0.2466}{0.5488} = 0.4493[/tex]

44.93% probability that the person will need to wait at least 7 minutes total