A proton is initially moving at 3.0 x 105 m/s. It moves 3.5 m in the direction of a uniform electric field of magnitude 120 N/C. What is the kinetic energy of the proton at the end of the motion

Respuesta :

Answer:

The kinetic energy is  [tex]K_f = 1.424 *10^{-15} \ J[/tex]

Explanation:

From the question we are told that

    The initial speed of the proton is  [tex]v_p = 3.0 * 10^{5} \ m/s[/tex]

    The distance covered is  [tex]d = 3.5 \ m[/tex]

   The magnitude of the electric field is [tex]E = 120\ N/C[/tex]

Generally the mass of  a proton is  [tex]m = 1.67 *10^{27} \ kg[/tex]

and the charge on a proton is  [tex]q= 1.60*10^{-19} \ C[/tex]

  Now according to work energy theorem,

 [tex]Work \ Done(W) = Kinetic \ Energy \ Change[/tex]

=>     [tex]W = K_f -K_i[/tex]

=>     [tex]K_f = W +K_i[/tex]

Where  [tex]K_f[/tex] is final kinetic energy and [tex]K_i[/tex]  is initial kinetic energy which is  mathematically represented as

       [tex]K_i = \frac{1}{2} * m * v_p^2[/tex]

Now the net workdone(W) is mathematically represented as

     [tex]W = F * d = q* E* d[/tex]

So

   [tex]K_f = q* E * d + \frac{1}{2} * m * v_p^2[/tex]

substituting values

    [tex]K_f = 1.60*10^{-19}* 120 * 3.5 + \frac{1}{2} * 1.67*10^{-27} *(3.0*10^{5})^2[/tex]

    [tex]K_f = 1.424 *10^{-15} \ J[/tex]