Considering only the values of 0 for which the expression is defined, which of the following is equivalent to the expression
below?
sin0 x tan0 x sec0 x cot(-0)
Select the correct answer below:
O-tan
O cot0csc0sec0
O-cot0csc0sec0
O tan0​

Considering only the values of 0 for which the expression is defined which of the following is equivalent to the expressionbelowsin0 x tan0 x sec0 x cot0Select class=

Respuesta :

Answer:

A. [tex]-tan\theta[/tex]

Explanation:

Given

[tex]sin\theta\ .\ tan\theta\ .\ sec\theta .\ cot(-\theta)[/tex]

Required

Simplify

[tex]sin\theta\ .\ tan\theta\ .\ sec\theta .\ cot(-\theta)[/tex]

Substitute [tex]\frac{1}{cos\theta|}[/tex] for [tex]sec\theta[/tex]

So, the expression becomes

[tex]sin\theta\ .\ tan\theta\ .\ \frac{1}{cos\theta} .\ cot(-\theta)[/tex]

Rearrange the above expression

[tex]sin\theta\ .\ \frac{1}{cos\theta}\. \ tan\theta\ .\ cot(-\theta)[/tex]

[tex]\frac{sin\theta}{cos\theta}\. \ tan\theta\ .\ cot(-\theta)[/tex]

From trigonometry;

[tex]tan\theta = \frac{sin\theta}{cos\theta}[/tex]

So, we have

[tex]tan\theta\ . \ tan\theta\ .\ cot(-\theta)[/tex]

From trigonometry;

[tex]cot(-\theta) = -cot(\theta)[/tex]

So, the above expression becomes

[tex]tan\theta\ . \ tan\theta\ .\ -cot(\theta)[/tex]

[tex]-tan\theta\ . \ tan\theta\ .\ cot(\theta)[/tex]

From trigonometry;

[tex]cot\theta = \frac{1}{tan\theta}[/tex]

So, we have

[tex]-tan\theta\ . \ tan\theta\ .\ \frac{1}{tan\theta}[/tex]

Express as a single fraction

[tex]\frac{-tan\theta\ . \ tan\theta }{tan\theta}[/tex]

[tex]-tan\theta[/tex]

Hence, [tex]sin\theta\ .\ tan\theta\ .\ sec\theta .\ cot(-\theta) = -tan\theta[/tex]