Answer:
a) [tex]V_A = \frac{(M_A - eM_B)U_A + M_BU_B(1+e)}{M_A + M_B}[/tex]
[tex]V_B = \frac{M_AU_A(1+e) + (M_B - eM_A)U_B}{M_A + M_B}[/tex]
b) [tex]U_A = 3.66 m/s[/tex]
[tex]V_B = 4.32 m/s[/tex]
c) Impulse = 0 kg m/s²
d) percent decrease in kinetic energy = 47.85%
Explanation:
Let [tex]U_A[/tex] be the initial velocity of rod A
Let [tex]U_B[/tex] be the initial velocity of rod B
Let [tex]V_A[/tex] be the final velocity of rod A
Let [tex]V_B[/tex] be the final velocity of rod B
Using the principle of conservation of momentum:
[tex]M_AU_A + M_BU_B = M_AV_A + M_BV_B[/tex]............(1)
Coefficient of restitution, [tex]e = \frac{V_B - V_A}{U_A - U_B}[/tex]
[tex]V_A = V_B - e(U_A - U_B)[/tex]........................(2)
Substitute equation (2) into equation (1)
[tex]M_AU_A + M_BU_B = M_A(V_B - e(U_A - U_B)) + M_BV_B[/tex]..............(3)
Solving for [tex]V_B[/tex] in equation (3) above:
[tex]V_B = \frac{M_AU_A(1+e) + (M_B - eM_A)U_B}{M_A + M_B}[/tex]....................(4)
From equation (2):
[tex]V_B = V_A + e(U_A -U_B)[/tex]......(5)
Substitute equation (5) into (1)
[tex]M_AU_A + M_BU_B = M_AV_A + M_B(V_A + e(U_A -U_B))[/tex]..........(6)
Solving for [tex]V_A[/tex] in equation (6) above:
[tex]V_A = \frac{(M_A - eM_B)U_A + M_BU_B(1+e)}{M_A + M_B}[/tex].........(7)
b)
[tex]M_A = 2 kg\\M_B = 1 kg\\U_B = -3 m/s( negative x-axis)\\e = 0.65\\U_A = ?[/tex]
Rod A is said to be at rest after the impact, [tex]V_A = 0 m/s[/tex]
Substitute these parameters into equation (7)
[tex]0 = \frac{(2 - 0.65*1)U_A - (1*3)(1+0.65)}{2+1}\\U_A = 3.66 m/s[/tex]
To calculate the final velocity, [tex]V_B[/tex], substitute the given parameters into (4):
[tex]V_B = \frac{(2*3.66)(1+0.65) - (1 - (0.65*2))*3}{2+1}\\V_B = 4.32 m/s[/tex]
c) Impulse, [tex]I = M_AV_A + M_BV_B - (M_AU_A + M_BU_B)[/tex]
[tex]I = (2*0) + (1*4.32) - ((2*3.66) + (1*-3))[/tex]
I = 0 [tex]kg m/s^2[/tex]
d) %[tex]\triangle KE = \frac{(0.5 M_A V_A^2 + 0.5 M_B V_B^2) - ( 0.5 M_A U_A^2 + 0.5 M_B U_B^2)}{0.5 M_A U_A^2 + 0.5 M_B U_B^2} * 100\%[/tex]
%[tex]\triangle KE = \frac{((0.5*2*0) + (0.5 *1*4.32^2)) - ( (0.5 *2*3.66^2) + 0.5*1*(-3)^2))}{ (0.5 *2*3.66^2) + 0.5*1*(-3)^2)} * 100\%[/tex]
% [tex]\triangle KE = -47.85 \%[/tex]