Q1. Two points A (-2, 9) and B (4, 8) lie on a line l. (i) Find the slope of the line l. (ii) Find the coordinates of the midpoint of the points A and B (iii) Find the distance between points A and B.

Respuesta :

Answer:

Slope = [tex]-\frac{1}{6}[/tex]

M(x,y) = (1 , 8.5)

D = [tex]\sqrt{37}[/tex]

Step-by-step explanation:

(i) Slope = [tex]\frac{rise}{run}[/tex]

=> Slope = [tex]\frac{8-9}{4+2}[/tex]

=> Slope = [tex]-\frac{1}{6}[/tex]

(ii) Midpoint

M(x,y) = [tex](\frac{x1+x2}{2} , \frac{y1+y2}{2} )[/tex]

M(x,y) = [tex](\frac{-2+4}{2} , \frac{9+8}{2} )[/tex]

M(x,y) = (1 , 8.5)

(iii) Distance Formula = [tex]\sqrt{(x2-x1)^2+(y2-y1)^2}[/tex]

D = [tex]\sqrt{(4+2)^2+(8-9)^2}[/tex]

D = [tex]\sqrt{(6)^2+(-1)^2}[/tex]

D = [tex]\sqrt{36+1}[/tex]

D = [tex]\sqrt{37}[/tex]

Answer:

Step-by-step explanation:

(i)  Find the slope of the line l.

m= rise/run

  = (y2-y1)/(x2-x1)

  = (8-4)/(9-(-2))

 = (8-4)/(9+2)

 = 4/11

Gradient= 4/11

(ii) Find the coordinates of the midpoint of the points A and B

Midpoint=( (x1+x2)/2 , (y1+y2)/2)

=( (-2+9)/2, (4+8)/2)

=( 7/2, 12/2)

= (3.5, 6)

                         

(iii) Find the distance between points A and B.

Distance= √(〖( x2-x1)〗^2+〖(y2-y1)〗^2 )

= √(〖( 9-(-2))〗^2+〖(8-4)〗^2 )

=√(〖(9+2)〗^2+〖(4)〗^2 )

=√(〖( 11)〗^2+〖(4)〗^2 )

=√(121+16)

=√137

=11.704