Respuesta :
Answer:
Slope = [tex]-\frac{1}{6}[/tex]
M(x,y) = (1 , 8.5)
D = [tex]\sqrt{37}[/tex]
Step-by-step explanation:
(i) Slope = [tex]\frac{rise}{run}[/tex]
=> Slope = [tex]\frac{8-9}{4+2}[/tex]
=> Slope = [tex]-\frac{1}{6}[/tex]
(ii) Midpoint
M(x,y) = [tex](\frac{x1+x2}{2} , \frac{y1+y2}{2} )[/tex]
M(x,y) = [tex](\frac{-2+4}{2} , \frac{9+8}{2} )[/tex]
M(x,y) = (1 , 8.5)
(iii) Distance Formula = [tex]\sqrt{(x2-x1)^2+(y2-y1)^2}[/tex]
D = [tex]\sqrt{(4+2)^2+(8-9)^2}[/tex]
D = [tex]\sqrt{(6)^2+(-1)^2}[/tex]
D = [tex]\sqrt{36+1}[/tex]
D = [tex]\sqrt{37}[/tex]
Answer:
Step-by-step explanation:
(i) Find the slope of the line l.
m= rise/run
= (y2-y1)/(x2-x1)
= (8-4)/(9-(-2))
= (8-4)/(9+2)
= 4/11
Gradient= 4/11
(ii) Find the coordinates of the midpoint of the points A and B
Midpoint=( (x1+x2)/2 , (y1+y2)/2)
=( (-2+9)/2, (4+8)/2)
=( 7/2, 12/2)
= (3.5, 6)
(iii) Find the distance between points A and B.
Distance= √(〖( x2-x1)〗^2+〖(y2-y1)〗^2 )
= √(〖( 9-(-2))〗^2+〖(8-4)〗^2 )
=√(〖(9+2)〗^2+〖(4)〗^2 )
=√(〖( 11)〗^2+〖(4)〗^2 )
=√(121+16)
=√137
=11.704