Respuesta :

Answer:

[tex]\frac{3(\sqrt{3} -\sqrt{x})}{3-x}[/tex] or [tex]\frac{3\sqrt{3}-3\sqrt{x} }{3-x}[/tex]

Step-by-step explanation:

[tex]\frac{\sqrt{9} }{\sqrt{3} +\sqrt{x} }[/tex]

[tex]\frac{3}{\sqrt{3}+\sqrt{x} }[/tex]

Multiply by the opposite by using the difference of squares converse formula.

[tex]\frac{3}{\sqrt{3} +\sqrt{x} } *\frac{\sqrt{3} -\sqrt{x}}{\sqrt{3} -\sqrt{x}}[/tex]

[tex]\frac{3(\sqrt{3} -\sqrt{x})}{3-x}[/tex]

[tex]\frac{3\sqrt{3}-3\sqrt{x} }{3-x}[/tex]

Answer:

3 sqrt(3) - 3 sqrt(x)

---------------------------

3  - x

Step-by-step explanation:

sqrt(9) = 3

so writing the expression as

3

--------------------

sqrt(3) + sqrt(x)

Multiply by the conjugate, sqrt(3) - sqrt(x) in the numerator and denominator

3                            sqrt(3) - sqrt(x)

-------------------- * ------------------

sqrt(3) + sqrt(x)    sqrt(3) - sqrt(x)

Foil the denominator

3 sqrt(3) - 3 sqrt(x)

---------------------------

sqrt(3) sqrt(3) + sqrt(3x) - sqrt(3x) - sqrt(x^2)

Simplify

3 sqrt(3) - 3 sqrt(x)

---------------------------

3  - x