Respuesta :

Answer:

B

Step-by-step explanation:

[tex]\sqrt[4]{x^\frac{2}{3} }=(x^\frac{2}{3} )^\frac{1}{4} =x^\frac{2}{12}=x^\frac{1}{6}[/tex]

Remember that [tex]\sqrt[n]{x}[/tex] is the same as [tex]x^\frac{1}{n}[/tex].

Also, I used the Power of a Power property.

Answer:

[tex] {x}^{ \frac{1}{6} } [/tex]

Option B is the correct option

Step-by-step explanation:

[tex] \sqrt[4]{ {x}^{ \frac{2}{3} } } [/tex]

Using [tex] \sqrt[n]{ {a}^{m} } = {a}^{ \frac{m}{n} } [/tex]transform the expression:

[tex]( {x}^{ \frac{2}{3} } ) ^{ \frac{1}{4} } [/tex]

Simplify the expression by multiplying exponents

[tex] {x}^{ \frac{2 \times 1}{3 \times 4} } [/tex]

Calculate the product:

[tex] {x}^{ \frac{2}{12} } [/tex]

Reduce the numbers with G.C.F 2

[tex] {x}^{ \frac{1}{6} } [/tex]

Hope this helps...

Good luck on your assignment...